AN ASSOCIATION BETWEEN TYPE 2 DIABETES MELLITUS AND A CLINICAL PERIODONTAL PARAMETER: POCKET DEPTH

Sara Mariyum1, Amjad Iqbal Khan2, Shamaila Wadud3, Hina Hakeem3, Nazma saleem4, Muhammad Younas5

1Department of Biochemistry, Swat Medical College, Swat
2Department of community dentistry, Saidu College of Dentistry, Swat
3 Department of Biochemistry, Peshawar Medical College, Peshawar
4Department of biochemistry, Rehaman College of Dentistry, Peshawar
5Department of Oral Medicine, Peshawar Dental College, Peshawar

ABSTRACT

Objectives: To find out an association between type 2 diabetes mellitus and a clinical periodontal parameter i.e Pocket depth

Materials and Methods: This research (case control) was performed in two hospitals of Peshawar, Prime Teaching hospital and Peshawar Dental hospital. Type 2 Diabetics with Periodontal problem, referred to the Periodontology departments of both the hospitals from June 2018 to January 2019, were included in our study. Patient having no diabetes and with periodontitis visiting Periodontology department of Peshawar Dental hospital were controls of our study. Basic periodontal examination of Diabetics and non-Diabetics patients was done in Periodontology ward of Peshawar dental college. Glycated hemoglobin test (HbA1C) of both Diabetics and Non-Diabetics patients was performed in laboratory of Prime Teaching Hospital.

Results: The correlation analysis in two subjects establish a durable link among Diabetes and Pocket Depth (rs=0.788). The average Periodontal Pocket Depth observed in our study is 3.70mm ± 1.28. In our study control group have Periodontal Pocket depth of 1.42mm± 0.94.

Conclusion: We conclude that diabetic patient compared to non-diabetic patients of similar age, gender, socio-economic status, level of education and oral hygiene measures have higher incidence of Periodontal disease.

Key words: Periodontitis, Glycated hemoglobin test (HbA1C)

INTRODUCTION

Chronic inflammatory conditions like Diabetes mellitus and periodontal disease, effectinghuman health badly. The word “Diabetes” originated from Greek language that means “to pass through “or “a siphon” and “mellitus” is a Latin word, meaning “honeyed or sweet”. Apollonius of Memphis was pioneer to use word ‘diabetes’ in 250 BC 1. Thomas Willis later added the term “mellitus”

The diabetes mellitus is a disorder due to either by deficiency in insulin hormone secretion, insulin action, or both1. Insufficiency in insulin release or its resistance, leads to lack of transport of glucose into the cells. Retention of glucose in the blood leads to hyperglycemia2.

Almost ninety-five percent of diabetes is of Type 2. Type 2 diabetes develop insulin resistance and mostly results in “relative” insulin deficiency”. Type 2 diabetes are capable to secrete some insulin as destruction of β pancreatic cells doesn’t occur in type 2 diabetes mellitus, though secretion frequently reduces with duration3.

Diabetes mellitus was considered as an epidemic
but now turned into pandemic. Obesity; intake of junk food, increase in population and unhealthy lifestyle is the basis of the global upturn in diabetes mellitus.

Pocket formation is one of the signs of periodontal disease and pocket depth is one of the clinical parameters that can be used to assess the severity level of periodontal disease. The periodontal disorders are a heterogeneous group of disorders that influence the surrounding structures of the teeth. One of the major causes of progression of periodontitis is diabetes mellitus. In diabetes, the inflammatory cells in the gingiva cause loss of structural components like fibroblasts and collagen. Destruction of layers of junctional epithelium causes loss in tooth contact which ultimately leads to periodontal pocket formation. Anaerobic environment in the pocket facilitates the accumulation of the facultative microorganisms. Apical proliferation of infiltrate and the assembly of Interleukin 1β (IL-1β), Tumor Necrosis Factor α (TNFα) and Prostaglandin 2 will augment the reaction to bacterial infection and leads to bone loss. When the disease is not treated, the tissue destruction caused by the inflammatory response overcomes any tissue repair and may result in the depth of the periodontal pocket; attachment loss and bone resorption.

Campus and his colleagues found a significant increase in the amount of probing and pocket depths in diabetic patients. There was significant increase in periodontal probing depth in diabetics after 6 months of follow up.

Effect of periodontitis varies indifferent culture; socioeconomic status, dietary and oral habits of different groups of populations. No such study has been conducted in the diabetic (Type2) population of the Khyber Pakhtunkhwa exploring a relationship of type 2 diabetics and periodontal Pocket depth.

MATERIALS AND METHODS

This matched case-control study has sample size calculated is 70 having 95% confidence level, two-sided significance level (α) of 0.05 to detect the Odds ratio (OR) of 5.5(on the basis of earlier studies). 105 patient of both gender were taken and study conducted from june 2018 to January 2019 in prime teaching and Peshawar dental hospital. Cases include 56 participants and controlled group containing 49. The two groups were similar in relation to sex, age, SES, level of education, methods of dental cleaning and frequency of dental cleaning methods.

Examination was scheduled in the morning. The patient reporting to the Periodontology department was met by the researcher who explained the examination procedure. The patients were free to inquire any query, if they realized that they still were unclear. The form was then filled both in English /Urdu and was signed by the participants. Researcher examined the patient wearing gloves, mask and goggles. The participants were also provided with goggles and napkins during examination. Instruments were sterilized in an Enclave Auto MEC 235 autoclave before examination. All the instruments were packed in Medicum Self-Sealing Sterilization Pouches of size 3 ½” x 10”/ 89 mm x 254 mm prior to sterilization. Mouth mirror; periodontal probe and WHO probe were used for the examination procedures.

At six sites of each tooth i.e mesiobuccal, distobuccal, mesiolingual, distolingual, midbuccal and midbuccal, probing depth was recorded, using a WHO probe. Probing was performed by inserting the probe into the gingival crevice along the long axis of the tooth and stopped when hindrance was felt.

Mean probing depth was taken. Clinical examination was normally completed within 30 mins for each subject. All the data was handled with confidentially and password protected computer was used for the data. Analysis of data was done by SPSS version 20.

RESULT

The present study included a total of 105 subjects, out of which 56 were cases and 49 as controls.

Mean age of participants were 51.48±7.92. The patients were grouped into five age groups. Group 1 ranges from 40-45 years, Group 2 from 46-50 years, Group 3 from 51-55 years, Group 4 from 56-60 years, Group 5 from 61-65 years.

Among 56 Diabetics (cases), 20 (35.7 %) were male and 36 (64.3 %) were females. Among 49 controls (non diabetics), 13 (26.5 %) were males and 36 (73.5 %) were females.

Out of 56 diabetics (cases) 18 (32.1 %) belonged to high socioeconomic status and 38 (67.9 %) were from low socioeconomic status.
An Association between Type 2 Diabetes Mellitus and a Clinical ... J Khyber Coll Dentistry, Mar 2023, Vol. 13, No. 1

diabetics (controls) 16(32.7%) belonged to high socio economic status and 33 (67.3%) belonged to low socio economic status.

In cases, frequency of brushing in 24 participants is one time, in 15 participants two times, 11 participant brush and 6 participant did not brush and not use any method of oral hygiene in 49 controls, 20 participant brushed once a day, 13 participant brushed two times a day, 11 cleaned teeth infrequently and 5 were not using any method of oral hygiene. (figure 3)

Table 1: Sample distribution of subjects

<table>
<thead>
<tr>
<th>Sample distribution</th>
<th>Numbers(n)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>56</td>
<td>53.3</td>
</tr>
<tr>
<td>Controls</td>
<td>49</td>
<td>46.6</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2: Age distribution of the subjects (n= 105)

<table>
<thead>
<tr>
<th>Age group</th>
<th>Numbers(n)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-45</td>
<td>30</td>
<td>28.6</td>
</tr>
<tr>
<td>46-50</td>
<td>15</td>
<td>14.3</td>
</tr>
<tr>
<td>51-55</td>
<td>21</td>
<td>20.0</td>
</tr>
<tr>
<td>56-60</td>
<td>32</td>
<td>30.5</td>
</tr>
<tr>
<td>61-65</td>
<td>7</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3: Comparison of Socioeconomic status between cases and controls

<table>
<thead>
<tr>
<th>Socioeconomic status</th>
<th>Cases</th>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>18(32.1)</td>
<td>16(32.7)</td>
<td>34</td>
</tr>
<tr>
<td>Low</td>
<td>38(67.9)</td>
<td>33(67.9)</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td>49</td>
<td>105</td>
</tr>
</tbody>
</table>

Table 4: Periodontal Probing Depth

<table>
<thead>
<tr>
<th>Factor</th>
<th>Cases Mean± SD(n=56)</th>
<th>Controls Mean± SD(n=49)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodontal Probing Depth</td>
<td>3.70±1.28</td>
<td>1.42±0.94</td>
<td><0.015*</td>
</tr>
</tbody>
</table>

*p value measured by t test
*significant (significance level p<0.05)

Table 5: Diabetes Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>r_s</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodontal Probing Depth</td>
<td>0.788</td>
<td>.000*</td>
</tr>
</tbody>
</table>

r_s = Spearman's rank correlation coefficient
* = significant

Mean Periodontal Pocket Depth of 3.70mm (± 1.28) in diabetics (cases) and 1.42mm(± 0.94) in non-diabetic (control) was recorded. p - value, measured by the T test was significant.

Spearman correlation test was conducted to explore the association between the type 2 diabetes and the periodontal pocket depth

DISCUSSION

Diabetes mellitus affected the periodontium has always remain an issue of research for the medical and dental professionals. Our research investigated the impact of diabetes mellitus upon the deepening of periodontal pockets that leads to periodontal disease.

![Fig 1: Gender Distribution](image1)

![Fig 2: Education Level](image2)

![Fig 3: Frequency of cleaning teeth](image3)
In our study the association between diabetes and Pocket Depth (r=0.788) was strong. The mean Periodontal Pocket depth observed in our study is 3.70mm ± 1.28 in diabetics (cases) which was higher than the mean Periodontal Pocket depth of 1.42mm ± 0.94 in Control group. Significance of the study was found by the difference of p=0.015 was found between the two groups. The results show that diabetic status is related to the Periodontal Pocket depth. These findings are in accordance to that of a study conducted in 2012 at Lahore by Haseeb et al, that have observed the mean Periodontal Pocket depth to be 3.96mm in diabetic group and 2.93mm in non-diabetics group. Significant difference was found between the group. Rohani et al have reported a mean Pocket depth of 2.54mm in diabetic group and 2.35mm in non-diabetic group with a significant difference of p=0.03 12 and the results support the findings of our study. Khader et al, also noted significant difference (P<.001) in the mean depth of periodontal pocket as 3.67mm ± 0.11 in diabetics and 2.82mm ± 0.08 in non-diabetics 13. Tran et al in a systematic review established that all the parameters of periodontal disorder including the periodontal pocket depth are adversely affected by the Diabetes Mellitus 14. Many factors have been mentioned to explain the higher prevalence of periodontitis and increased depth of periodontal Pockets in diabetics that includes: the change in the flora of gingival, host reaction and delayed healing 15. Apical proliferation of infiltrate and the production of Interleukin 1β (IL-1β), Tumor Necrosis Factor α and Prostaglandin 2 will rapidly raise infection caused by bacteria and leads to loss of bone. If the pathology is left untreated, tissue damage initiated by the inflammatory reaction overcomes any repair and will cause deepening of pocket; loss of attachment, bone and tooth loss 16. Joshipura et al also reported the relationship between the periodontal pocket depth and the blood glucose levels in diabetics 17. Contrary to these findings, Serrano et al, have found insignificant difference (p=0.88) between the mean Pocket depth of diabetics (2.53mm ±0.61) and non-diabetic group (2.51mm ±0.46) 18. Mattout et al, also found almost same values of pocket depth between the two groups 19. The confounding effect of different factors like duration of diabetes, glycemic control etc. may have caused these similarities as most of the studies reported significant differences between the mean pocket depths of the two groups.

CONCLUSION

A strong association does exist between Type 2 diabetes mellitus and periodontal pocket depth. Periodontal pocket depth is one of the clinical parameter that shows the severity level of periodontitis

REFERENCES

6. Emese B, Dorotty G, Szabolcs N, Csaba L, Gabriella E, Zolta nB, Tama’s V. Periodontal Disease in Diabetes Mellitus: A Case– Control Study in Smokers and Non-Smokers Received:2020
An Association between Type 2 Diabetes Mellitus and a Clinical ...

